Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Mechanisms of oxygen reduction reactions for carbon alloy catalysts via first principles molecular dynamics

Ikeda, Takashi; Hou, Z.*; Chai, G.-L.*; Terakura, Kiyoyuki*

Hyomen Kagaku, 36(7), p.345 - 350, 2015/07

Carbon alloy catalysts (CACs) are one of promising candidates for platinum-substitute cathode catalysts for polymer electrolyte fuel cells. We have investigated possible mechanisms of oxygen reduction reactions (ORRs) for CACs via first-principles-based molecular dynamics simulations. In this contribution, we review possible ORRs at likely catalytic sites of CACs suggested from our simulations.

Journal Articles

Possible oxygen reduction reactions for graphene edges from first principles

Ikeda, Takashi; Hou, Z.*; Chai, G.-L.*; Terakura, Kiyoyuki*

Journal of Physical Chemistry C, 118(31), p.17616 - 17625, 2014/08

 Times Cited Count:51 Percentile:80.6(Chemistry, Physical)

N-doped carbon-based nanomaterials are attracting a great interest as promising Pt-free electrode catalysts for polymer electrolyte fuel cells (PEFCs). In this computational study, we demonstrate that N-doped graphene edges can exhibit enhanced catalytic activity toward oxygen reduction reactions by controlling their electron-donating and -withdrawing abilities, and basicity, resulting in higher selectivity of 4e$$^{-}$$ reduction via inner and outer sphere electron transfer at edges in acidic conditions, respectively. Our simulations also show that 2e$$^{-}$$ reduction occurs selectively in the presence of pyridinic N next to carbonyl O at zigzag edges. This study thus rationalizes the roles of doped N in graphenelike materials for oxygen reduction reactions.

2 (Records 1-2 displayed on this page)
  • 1